
The Heat Transfer Coefficient Predictions in Engineering Applications
Author(s) -
Junchi Wan
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2108/1/012022
Subject(s) - heat transfer coefficient , film temperature , churchill–bernstein equation , heat transfer , convective heat transfer , thermodynamics , boundary layer , mechanics , materials science , turbulence , reynolds number , mass transfer coefficient , dynamic scraped surface heat exchanger , critical heat flux , mass transfer , nusselt number , physics
Most engineering applications have boundary layers; the convective transport of mass, momentum and heat normally occurs through a thin boundary layer close to the wall. It is essential to predict the boundary layer heat transfer phenomenon on the surface of various engineering machines through calculations. The experimental, analogy and numerical methods are the three main methods used to obtain convective heat transfer coefficient. The Reynolds analogy provides a useful method to estimate the heat transfer rate with known surface friction. In the Reynolds analogy, the heat transfer coefficient is independent of the temperature ratio between the wall and the fluid. Other methods also ignore the effect of the temperature ratio. This paper summarizes the methods of predicting heat transfer coefficients in engineering applications. The effects of the temperature ratio between the wall and the fluid on the heat transfer coefficient predictions are studied by summarizing the researches. Through the summary, it can be found that the heat transfer coefficients do show a dependence on the temperature ratio. And these effects are more obvious in turbulent flow and pointing out that the inaccuracy in the determination of the heat transfer coefficient and proposing that the conjugate heat transfer analysis is the future direction of development.