
Status of the R2D2 project: A future neutrinoless double beta decay experiment
Author(s) -
I. Katsioulas
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2105/1/012016
Subject(s) - double beta decay , majorana , physics , neutrino , nuclear physics , particle physics , beta (programming language) , beta decay , energy (signal processing) , resolution (logic) , computer science , programming language , quantum mechanics , artificial intelligence
The nature of the neutrino is a central questions in physics. The search for neutrinoless double beta decay is the most sensitive experimental approach to demonstrate that the neutrino is a Majorana particle. Observation of such a rare process demands a detector with an excellent energy resolution, extremely low background, and a large mass of a double beta decaying isotope. R2D2 aims to develop a novel spherical high-pressure TPC that meets all the above requirements. As a first step, the energy resolution of the R2D2 prototype was measured. A 1.1% (FWHM) energy resolution was achieved for 5.3 MeV α -particles in Ar:CH 4 at pressure up to 1.1 bar. This is a major milestone for R2D2 and paves the way for further studies with Xe gas and the possible use of this technology for neutrinoless double beta decay searches.