
Design and Mechanical Properties of a New Clamp-Type Carbon Fiber Materials Tension Anchoring System
Author(s) -
Xianwei Wang,
Bo Liu,
Shengyong Hu,
Longsheng Bao
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2101/1/012060
Subject(s) - anchoring , fixture , materials science , tension (geology) , structural engineering , clamp , ultimate tensile strength , deformation (meteorology) , fiber , composite material , finite element method , clamping , mechanical engineering , engineering
Carbon fiber materials are widely used in bridge reinforcement techniques, while conventional carbon fiber material tensile anchoring equipment produces a large prestressed loss. This paper analyzes the deficiencies of existing tensile anchoring systems at home and abroad, summarizing the cause of prestressed losses, and combining with existing anchoring systems, a new type of clamp type carbon fiber cloth tension anchoring system is proposed. The amount of deformation of the anchoring system is reduced by about 20%, which in turn reduces the system prestress loss caused by the system deformation. The ABAQUS finite element analysis software is used to numerically simulate the thickness of the tension anchor system and the force of the fixture at different inclination angles. Compare the experimental measurement data, under consideration of the mechanical properties of the system, making errors, and installation convenient prerequisites, the mechanical properties of the system are optimal when the thickness of the fixed plate is 30mm and the clamp tilt angle is 5 °.