
Numerical Investigation of Unsteady Flow Dynamics in a Packed Bed
Author(s) -
Dmitry Pashchenko,
A. I. Shchelokov,
A. V. Satonin,
I. T. Makarov
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2096/1/012138
Subject(s) - pressure drop , mechanics , fluent , nozzle , pressure coefficient , materials science , cylinder , computational fluid dynamics , flow (mathematics) , discharge coefficient , turbulence , mathematics , mechanical engineering , physics , engineering , geometry
Numerical simulation of unsteady flow of a compressible fluid in a fixed bed filled with porous elements has been performed. The research was carried out via ANSYS Fluent software. The scientific substantiation and verification of the physical and mathematical approaches incorporated in ANSYS Fluent for the problem of unsteady flow in a fixed bed has been carried out. For the computational domain, the interfaces of the flow area and the surface of porous particles are coupled by combining the contacts into a component part. The numerical results were verified using experimental data. The study was carried out in the range of velocity from 0.25 to 3.25 m/s. An expression is proposed for determining the pressure drop in a fixed bed, in which the pressure drop depends on the velocity, flow properties and the linear coefficient of local resistance. The values of the linear coefficient of local resistance are determined for the most common nozzle shapes in the industry: cylinder, Raschig ring, convex cylinder with 7 holes, sphere with 7 holes. It was found that with an increase in velocity, the value of the linear coefficient of local resistance decreases.