
An Autonomous Vibration-Sensing System for Power Transmission Lines Monitoring
Author(s) -
Qingpu Meng,
Fuguang Huo,
Song Teng,
Zushan Ding,
Tun Gu,
Chuang Cao
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2095/1/012014
Subject(s) - electrical engineering , electric power transmission , energy harvesting , wireless sensor network , wireless , computer science , vibration , energy (signal processing) , engineering , electronic engineering , acoustics , telecommunications , physics , computer network , quantum mechanics
An autonomous vibration-sensing system including of ring magnetoelectric energy scavenger, an energy management module, a plurality of wireless acceleration sensor nodes and APP mobile terminal for power transmission lines monitoring was presented. The ring-type ferrite/piezoelectric composite with strong magnetoelectric couplings and a coil wound around it is used to scavenge the electromagnetic energy around the conductor, and the energy management module successively fulfill the functions of inductive/capacitive resonance matching, rectification and voltage stabilization and storage/release of the scavenged electric energy, and then provides driving power for signal acquisition and data transmission of 4G wireless acceleration sensor nodes. Testing results show that the collected energy can fulfill the power-supplying requirements of ADXL345, and the real-time as well as historical data curves within a specified time can be acquired through 4G and narrowband internet of things technologies.