
Cyber-physical systems matrix control model
Author(s) -
A. V. Gurjanov,
Д А Заколдаев,
И. О. Жаринов,
О. О. Жаринов
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2094/4/042067
Subject(s) - cyber physical system , hierarchy , control (management) , task (project management) , physical system , consistency (knowledge bases) , control system , computer science , hierarchical control system , interconnection , distributed computing , engineering , industrial engineering , systems engineering , artificial intelligence , telecommunications , physics , electrical engineering , quantum mechanics , economics , market economy , operating system
The Industry 4.0 technologies oriented for the modern industry as an application to solve the cyber-physical production control general task are viewed. A task to control is positioned as a hierarchy, which require some special schemes cyber-physical systems interaction organization to be developed. The control task hierarchy is converted to the control means hierarchy, within which they preserve the cyber-physical systems groups coordination unity organized in the company functional divisions in structure principle with variable equipment consistency. Information and functional cyber-physical systems interconnection are proposed to be defined within the technical architecture providing cyber-physical production complex automatizing. In the control system they underline the information component realizing not only calculation functions measuring but also net communication. Controlling and being controlled cyber-physical systems are proposed to be united into structures actively interacting with functional company divisions into closed automatic loops working out information and signal actions. There is a cyber-physical production hierarchy structure example given based on control processes tides formalized in physical and virtual levels. There is a cyber-physical systems matrix control model given to coordinate calculations, communications and industrial automatics functionality.