
Physics of evolution and unity of physics
Author(s) -
V. M. Somsikov,
A M Abylay,
D.B. Kuvatova
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2094/2/022029
Subject(s) - statistical mechanics , physics , dissipative system , analytical mechanics , motion (physics) , basis (linear algebra) , classical mechanics , classical physics , analytical dynamics , theoretical physics , statistical physics , quantum mechanics , mathematics , quantum statistical mechanics , geometry , quantum
The article considers the question of the possibility of constructing classical mechanics and empirical branches of physics, such as thermodynamics, statistical physics and kinetics on a general theoretical basis. The principles of constructing mechanics, thermodynamics, statistical physics, and kinetics are briefly given. It is shown how the construction of the above sections of physics on a unified basis became possible, relying on the mechanics of a structured body. The essence of this mechanics is that, unlike Newton’s mechanics, built for a body model in the form of a material point, this mechanics is built based on a body model in the form of a structured body. Moreover, the structured body is specified in the form of an equilibrium system of potentially interacting material points. It is shown how the equation of motion of a structured body is derived. The peculiarity of this equation is that it takes into account the transformation of the energy of motion of a structured body into internal energy when it moves in an inhomogeneous field of forces. This makes it possible to describe dissipative processes within the framework of the mechanics of a structured body without invoking statistical laws. Examples are given of how the empirical principles of the phenomenological branches of physics directly follow from the fundamental laws of physics.