Open Access
Spherical model and quantum phase transitions
Author(s) -
V. N. Udodov
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2094/2/022027
Subject(s) - critical exponent , scaling , phase transition , critical dimension , critical phenomena , spherical model , zero (linguistics) , absolute zero , interpolation (computer graphics) , dimension (graph theory) , quantum phase transition , space (punctuation) , quantum , physics , field (mathematics) , quantum critical point , exponent , mathematical physics , mathematics , quantum mechanics , classical mechanics , geometry , pure mathematics , motion (physics) , linguistics , philosophy
The spherical Berlin-Katz model is considered in the framework of the epsilon expansion in one-dimensional and two-dimensional space. For the two-dimensional and threedimensional cases in this model, an exact solution was previously obtained in the presence of a field, and for the two-dimensional case the critical temperature is zero, that is, a “quantum” phase transition is observed. On the other hand, the epsilon expansion of critical exponents with an arbitrary number of order parameter components is known. This approach is consistent with the scaling paradigm. Some critical exponents are found for the spherical model in one-and twodimensional space in accordance with the generalized scaling paradigm and the ideas of quantum phase transitions. A new formula is proposed for the critical heat capacity exponent, which depends on the dynamic index z, at a critical temperature equal to zero. An expression is proposed for the order of phase transition with a change in temperature (developing the approach of R. Baxter), which also depends on the z index. An interpolation formula is presented for the effective dimension of space, which is valid for both a positive critical temperature and a critical temperature equal to zero. This formula is general. Transitions with a change in the field in a spherical model at absolute zero are also considered.