
Artificial neural network for solving multi-parameter optimization problems
Author(s) -
Krivorotko Olga,
Shuang Liu
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2092/1/012013
Subject(s) - backpropagation , artificial neural network , computer science , process (computing) , algorithm , mathematical optimization , rprop , artificial intelligence , mathematics , types of artificial neural networks , time delay neural network , operating system
An artificial neural network (ANN) is a mathematical or computational model that simulates the structure and function of biological neural networks used to evaluate or approximate functions at given points. After developing the training algorithm, the resulting model will be used to solve image recognition problems, control problems, optimization, etc. In the process of ANN training, the algorithm of backpropagation is used in the case of convex optimization functions. The article is analyzed test functions for experiments and also study the effect of the number of ANN layers on the quality of approximation in cases one-, two- and three-dimensional. The backpropagation method is improved during the experiments with the help of adaptive gradient, as a result of which more accurate approximations of the functions are obtained. This article also presents the numerical results of test functions.