
Frequencies analysis in an infinite beams array
Author(s) -
Hugo Aya Baquero
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2090/1/012070
Subject(s) - equidistant , brillouin zone , physics , wave propagation , optics , bloch wave , beam (structure) , computational physics , acoustics , geometry , mathematics , condensed matter physics
This model consists of a periodic structure formed by solid beams equidistant from each other submerged in a fluid. The beams are clamped at both ends. The distance between the beams, the elastic properties of the solid and the fluid; and the geometric parameters of the beams determine a relationship between the frequencies of the mechanical waves that can propagate through the structure and the wave vector. Analysis within the first Brillouin zone with the Bloch periodicity condition gives rise to frequency bands in which there is the propagation of mechanical waves and bands in which no waves are propagated. Some propagation bands and forbidden regions were found in the examined frequency ranges for various geometric configurations.