
Mathematical Modeling of Soliton-Like Modes at Optical Rectification
Author(s) -
А. А. Калинович,
Irina G. Zakharova,
M. V. Komissarova,
С. В. Сазонов
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2090/1/012040
Subject(s) - terahertz radiation , optical rectification , generalization , soliton , optics , nonlinear system , physics , nonlinear optical , pulse (music) , mathematics , nonlinear optics , mathematical analysis , quantum mechanics , detector
We discuss the results of numerical modeling of forming optical-terahertz bullets at the process of optical rectification. Our calculations are based on a generalization of the well-known Yajima - Oikawa system, which describes the nonlinear interaction of short (optical) and long (terahertz) waves. The generalization relates to situations when the optical component is close to a few-cycle pulse. We study the influence of the number of optical pulse oscillations on the formation of an optical-terahertz bullet. We develop original nonlinear conservative pseudo-spectral difference scheme approximating the generalization of the Yajima-Oikawa system. It is realized with the help of FFT algorithm. Mathematical modeling demonstrates scheme efficiency.