
Automatic Classification of Cardiac Arrhythmias based on ECG Signals Using Transferred Deep Learning Convolution Neural Network
Author(s) -
P. Giriprasad Gaddam,
A Sanjeeva reddy,
R.V. Sreehari
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2089/1/012058
Subject(s) - artificial intelligence , deep learning , cardiac arrhythmia , convolutional neural network , computer science , transfer of learning , pattern recognition (psychology) , artificial neural network , normal sinus rhythm , convolution (computer science) , electrocardiography , categorization , waveform , wavelet , cardiology , medicine , atrial fibrillation , telecommunications , radar
In the current article, an automatic classification of cardiac arrhythmias is presented using a transfer deep learning approach with the help of electrocardiography (ECG) signal analysis. Now a days, an ECG waveform serves as a powerful tool used for the analysis of cardiac arrhythmias (irregularities). The goal of the present work is to implement an algorithm based on deep learning for classification of different cardiac arrhythmias. Initially, the one dimensional (1-D) ECG signals are transformed to two dimensional (2-D) scalogram images with the help of Continuous Wavelet(CWT). Four different categories of ECG waveform were selected from four PhysioNet MIT-BIH databases, namely arrhythmia database, Normal Sinus Rhythm database, Malignant Ventricular Ectopy database and BIDMC Congestive heart failure database to examine the proposed technique. The major interest of the present study is to develop a transferred deep learning algorithm for automatic categorization of the mentioned four different heart diseases. Final results proved that the 2-D scalogram images trained with a deep convolutional neural network CNN with transfer learning technique (AlexNet) pepped up with a prominent accuracy of 95.67%. Hence, it is worthwhile to say the above stated algorithm demonstrates as an effective automated heart disease detection tool