
Insights into Artificial Neural Network techniques, and its Application in Steganography
Author(s) -
R. Gurunath,
Debabrata Samanta
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2089/1/012043
Subject(s) - steganography , computer science , artificial intelligence , artificial neural network , perceptron , deep learning , information hiding , convolutional neural network , payload (computing) , cover (algebra) , steganalysis , process (computing) , pattern recognition (psychology) , machine learning , embedding , computer security , engineering , mechanical engineering , network packet , operating system
Deep Steganography is a data concealment technology that uses artificial intelligence (AI) to automate the process of hiding and extracting information through layers of training. It enables for the automated generation of a cover depending on the concealed message. Previously, the technique depended on the existing cover to hide data, which limited the number of Steganographic characteristics available. Artificial intelligence and deep learning techniques have been used to steganography recently and the results are satisfactory. Although neural networks have demonstrated their ability to imitate human talents, it is still too early to draw comparisons between people and them. To improve their capabilities, neural networks are being employed in a number of disciplines, including steganography. Recurrent Neural Networks (RNN) is a widely used technology that automatically creates Stego-text regardless of payload volume. The features are extracted using a convolution neural network (CNN) based on the image. Perceptron, Multi-Layer Perceptron (MLP), Feed Forward Neural Network, Long Short Term Memory (LSTM) networks, and others are examples of this. In this research, we looked at all of the neural network approaches for Steganographic purposes in depth. This article also discusses the problems that each technology faces, as well as potential solutions.