
Influence of pipeline geometry on hydrodynamics and heat transfer processes by an example of a ship steam generator
Author(s) -
O. V. Mitrofanova,
A V Fedorinov
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2088/1/012033
Subject(s) - nuclear power , vortex , boiler (water heating) , curvilinear coordinates , thermal power station , engineering , flow (mathematics) , pipeline (software) , heat transfer , nuclear engineering , electricity generation , power (physics) , mechanical engineering , marine engineering , mechanics , electrical engineering , physics , quantum mechanics , nuclear physics , waste management
The theoretical and computational analysis proposed in this work is aimed at identifying the features of thermal and hydrodynamic processes carried out in the steam-generating channels of the ship type water-moderated nuclear power installations. It is shown that the complex geometry of the thermohydraulic tract curvilinear channels of the steam generating system has a significant effect on the efficiency of the transport nuclear power installation. In addition to the formation of large-scale vortex structures and swirling flow in the pipeline, the phenomenon of the swirling flow crisis is revealed, under which the low-frequency component of the acoustic spectrum is enhanced. The scientific and applied significance of the proposed research is associated with the need to ensure a wide range of operational changes in efficient and safe operation power modes of icebreaker nuclear power installations. The research, aimed at developing the principles of physical and mathematical modeling of complex vortex flows, is necessary to optimize the design parameters of the thermal power equipment elements of new generation ship nuclear power installations in order to ensure increased safety and reliability of their operation.