
Research on short-term wind power Prediction of GRU based on similar days
Author(s) -
Yong Loo Lin,
Haiing Zhang,
Jiyan Liu,
Wenjie Ju,
JinYou Wang,
Xiao Chen
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2087/1/012089
Subject(s) - artificial neural network , randomness , wind power , term (time) , smoothing , computer science , power (physics) , wind speed , power grid , data mining , algorithm , statistics , artificial intelligence , mathematics , meteorology , engineering , physics , quantum mechanics , electrical engineering , computer vision
As the proportion of wind power generation continues to increase, accurate forecasting of wind power output is of great significance to the smooth operation of the entire power grid. However, due to the greater impact of environmental factors, wind power generation has strong randomness, and it becomes difficult to accurately predict the power generation. Thus, a new hybrid model for wind power generation prediction combining GRU neural networks and similar days’ characters analysis is proposed to address solve this problem. The prediction method employs grey relation analysis to screen similar days, which not only reduces the amount of data required to train the model, reduces the computational complexity, and improves the training speed, but also improves the prediction accuracy based on the selected datasets. In addition, this method also filters and processes the data through box-plot analysis and linear smoothing, which further improves the prediction accuracy of the model. The results show that compared with a single GRU network, the MAE of this method has dropped by 1.89, RMSE has dropped by 1.9, and MAPE has dropped by 11.07%. Obviously, the prediction model based on similar days extraction has obvious advantages.