
Small-signal modeling and stability analysis of grid-connected offshore wind power based on virtual synchronous generator control
Author(s) -
Lizhi Dong,
Danqing Song,
Zhuo Chen
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2087/1/012055
Subject(s) - offshore wind power , control theory (sociology) , permanent magnet synchronous generator , grid , inverter , electric power system , wind power , power (physics) , engineering , small signal model , computer science , correctness , electrical engineering , control (management) , voltage , physics , geometry , mathematics , quantum mechanics , artificial intelligence , programming language
With the increasing installed capacity of offshore wind power, the grid-connected of offshore wind power technology based on virtual synchronous generators (VSG) control can simulate the inertia and damping characteristics of synchronous generator, which is helpful to improve the networking ability and inertial supportability of grid-connected inverter. However, VSG control also inevitably causes system oscillation, endangers the safe and stable operation of the power grid. Hence, the main circuit and control circuit of offshore wind power grid connection are firstly modeled, and the small-signal model of offshore wind power grid-connected inverter based on VSG control is obtained. Then the correctness of the model is verified by Matlab/Simulink software. Finally, the root trajectory method is used to identify the effects of VSG control parameters and line parameters on the system stability. The results show that VSG control has a significant influence on the stability of the grid-connected system, and reasonable design parameters are needed to ensure the safe and stable operation of the power grid.