
Simulation analysis of cooperative motion fuzzy control of distributed lifting units
Author(s) -
Yang Yu,
Xing Jin
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2087/1/012050
Subject(s) - hoist (device) , control theory (sociology) , throttle , control system , hydraulic machinery , engineering , control engineering , pid controller , matlab , body orifice , hydraulic cylinder , fuzzy control system , lift (data mining) , fuzzy logic , computer science , control (management) , automotive engineering , mechanical engineering , temperature control , electrical engineering , artificial intelligence , data mining , operating system
In the technology of hydraulic lifting system, it is not only necessary to ensure that the displacement and velocity accuracy of each hoist reach a certain value, but also to ensure that under the control of load balance to make each hoist smooth lift. In the conventional method, the PID control method can realize the synchronization of the function. However, the system cannot be controlled and adjusted in real time during the control parameter period, resulting in instability and uncertainty of the system. Aiming at this problem, this paper adds the fuzzy adaptive controller to carry out the master-slave control of the system. AMESim and MATLAB co-simulation were used to model the overall model of the hydraulic system. At the same time, the pressure compensator and variable throttle port model in the hydraulic reservoir were selected to build. The pressure compensator is used to keep the pressure difference of the throttle orifice constant, so as to complete the control and design of the hydraulic lifting system. Finally, the simulation results obtained not only can effectively improve the instability of the hydraulic lifting process, but also greatly improve the operation speed of the system.