
Reconstruction of some cosmological models from the deceleration parameter
Author(s) -
Ароонкумар Беешам
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2081/1/012001
Subject(s) - dark energy , deceleration parameter , cosmology , physics , theoretical physics , cosmological constant , focus (optics) , hubble's law , dark matter , acceleration , metric expansion of space , classical mechanics , astrophysics , optics
Since the discovery of the late-time acceleration of the universe, researchers are still trying to fnd an explanation for it. This is regarded as the most important unsolved problem in cosmology today. The most favoured explanation is dark energy, an unknown or exotic form of matter with negative pressure. One may argue that particle physics may provide the answer in time. Currently, the LambdaCDM model is regarded as the best model. Although this model is reasonably successful and widely accepted, there is growing interest in looking at alternatives. Some of the reasons for this are the fne-tuning, coincidence, infationary paradigm and cosmological constant problems, and whether general relativity is valid on large scales. One focus in trying to understand dark energy is to assume some form of the scale, Hubble or deceleration parameter (or some other reasonable assumption), and then to see how well the model fts in with current observations. This approach is broadly called reconstruction. In this talk, we focus on the deceleration parameter. We provide a brief review of the various forms of the deceleration parameter that have been employed in the past in cosmology, and then focus on some particular forms of interest which have drawn some attention. We note that it is most worthwhile to study alternative dark energy and dark gravity models in order to fully understand the entire space of possibilities.