z-logo
open-access-imgOpen Access
Finger Vein Recognition System Based on Convolutional Neural Network and Android
Author(s) -
Yangfeng Wang,
Tao Chen
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2078/1/012053
Subject(s) - software portability , convolutional neural network , computer science , biometrics , android (operating system) , software , embedded system , artificial intelligence , artificial neural network , feature extraction , computer hardware , operating system
With the rapid development of science and technology, biotechnology has developed rapidly. Among the many biometric technologies, finger vein technology has the characteristics of vitality, portability, and non-replicability, so it is considered to be the most promising biometric technology. However, the accuracy of finger vein recognition is affected by the collection device, the surrounding temperature and the algorithm. The flaws cannot be applied to real life on a large scale. This paper designs a finger vein recognition system based on convolutional neural network and Android, which mainly includes the following three parts. First, the system hardware includes the design of the acquisition device, the selection of the core development board and the display screen. Second, the design of the entire system software architecture is based on the MVVM architecture, which ensures low coupling of the program and is easy for later expansion and maintenance. The software includes collection function, recognition function and administrator function. Finally, a lightweight neural network is proposed for finger vein feature extraction, and proposed a storage method based on MMKV to meet the real-time performance of the system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here