z-logo
open-access-imgOpen Access
Hierarchical ensemble learning method in diversified dataset analysis
Author(s) -
Ze yuan Liu,
Xin long Li
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2078/1/012027
Subject(s) - categorical variable , random forest , artificial intelligence , machine learning , ensemble learning , computer science , classifier (uml) , regression , regression analysis , pattern recognition (psychology) , data mining , mathematics , statistics
The remarkable advances in ensemble machine learning methods have led to a significant analysis in large data, such as random forest algorithms. However, the algorithms only use the current features during the process of learning, which caused the initial upper accuracy’s limit no matter how well the algorithms are. Moreover, the low classification accuracy happened especially when one type of observation’s proportion is much lower than the other types in training datasets. The aim of the present study is to design a hierarchical classifier which try to extract new features by ensemble machine learning regressors and statistical methods inside the whole machine learning process. In stage 1, all the categorical variables will be characterized by random forest algorithm to create a new variable through regression analysis while the numerical variables left will serve as the sample of factor analysis (FA) process to calculate the factors value of each observation. Then, all the features will be learned by random forest classifier in stage 2. Diversified datasets consist of categorical and numerical variables will be used in the method. The experiment results show that the classification accuracy increased by 8.61%. Meanwhile, it also improves the classification accuracy of observations with low proportion in the training dataset significantly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here