
Implementation of Tactical Decision Aids Based on Event Knowledge Graph
Author(s) -
Zhen Jia,
Yang Chu,
Zhi Liu
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2078/1/012024
Subject(s) - computer science , event (particle physics) , graph , bayesian network , battlefield , artificial intelligence , theoretical computer science , machine learning , ancient history , physics , quantum mechanics , history
This paper proposes a new tactical decision aids method based on event knowledge graph (EventKG). In the warfare domain, EventKG can be constructed through event types design, event network construction and transition probability computation between events. Initially, four event classes are introduced in accordance with the OODA loop, and eighteen subclasses are further decomposed. With the aids of a common event template, all the events taking place in the battle field can be described. Event networks are built by adopting the hierarchical task network (HTN) and described through Bayesian network, to exhibit various relations between battle events. Transition probability, namely the occurrence probability of next possible event, is computed by using the prior probability and conditional probability of event occurring. On the basis of structured EventKG, entity knowledge graph (EKG) and entity relation knowledge graph (ERKG), tactical decision aid instructions can be generated by combining with the battlefield situation information.