z-logo
open-access-imgOpen Access
Optimization of multiple quality characteristics for end milling under dry cutting environment using desirability function
Author(s) -
V V N Sarath,
N. Tamiloli
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2070/1/012218
Subject(s) - machining , taguchi methods , tungsten carbide , mechanical engineering , surface roughness , surface finish , materials science , process engineering , computer science , engineering , composite material
Milling AA6082T6 materials is a difficult venture because of their heterogeneity and a slew of problems, inclusive of surface roughness, that get up for the duration of the machining method and are connected to the material’s homes and slicing settings. The optimization of machining parameters is a crucial section inside the manufacturing method. This research introduces a unique approach for improving machining settings whilst milling aluminum alloy. A technique notorious as desirability function analysis (DFA) turned into worn to optimize machining parameters. DFA is a effective tool for optimizing multi-reaction problems. Milling research for aluminum alloy were completed using tungsten carbide end milling inserts in dry situations, based totally on Taguchi’s L9 orthogonal array. Multi-response issues, along with machining pressure and surface roughness, are used to optimize machining parameters including feed charge, spindle speed, and depth of reduce. person desirability values from the desirability characteristic analysis are used to create a composite desirability cost for the multi-responses. The most effective ranges of parameters had been discovered based at the composite desirability fee and substantial contribution of parameters has been determined the usage of analysis of variance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here