z-logo
open-access-imgOpen Access
Comfort and efficiency-based improvements to the control of residential Venetian blinds
Author(s) -
J Roberts,
Giuseppe De Michele,
Giovanni Pernigotto,
Andrea Gasparella,
Stefano Avesani
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2069/1/012130
Subject(s) - overheating (electricity) , glazing , trnsys , daylight , energy consumption , thermal comfort , computer science , environmental science , thermal , automotive engineering , simulation , engineering , meteorology , electrical engineering , civil engineering , physics , optics
This study focuses on the control of movable Venetian blinds. Multiple improvements to an existing on/off open-loop control strategy in a case-study apartment have been simulated in TRNSYS 18, thanks to the detailed optical and thermal modelling allowed by the Bidirectional Scattering Distribution Function (BSDF) used as input to the Type56_CFS. The control strategy improvements include the combination of rule-based, closed-loop and discrete state control, in addition to four control strategy activation methods (three use a schedule, and one measures the external temperature). Simulated control inputs include internal temperature, external temperature and vertical irradiance. The results show reductions in overheating, achieved without completely blocking natural illumination or compromising heating demand. While on/off control in winter often leads to increased heating energy consumption, the space sees regular overheating when on/off control is inactive over winter. Conversely, discrete state control is able to more precisely control solar gains in winter to maintain an adequate temperature without utilising the heating system, all the while allowing some level of natural illumination. Ultimately, it is concluded that the choice of the control strategy depends on which objective (minimisation of heating energy consumption, maximisation of daylight harvesting, reduction of overheating risk, etc.) is prioritised.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here