
Thermal performance of ETICS, energy activated with PCM and PV
Author(s) -
Martin Talvik,
Simo Ilomets,
Targo Kalamees,
Paul Klõšeiko,
Dariusz Heim,
Anna Wieprzkowicz,
Dominika Knera
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2069/1/012116
Subject(s) - casing , thermal , phase change material , materials science , melting temperature , efficient energy use , maximum temperature , environmental science , composite material , nuclear engineering , mechanical engineering , engineering , electrical engineering , thermodynamics , physics
Installing photo-voltaic (PV) panels on building façades is a growing tendency that helps to achieve both newly built and renovated nearly zero energy buildings. A novel approach to building active facades is to use a phase change material (PCM) behind the flexible PV. The PCM stabilises the PV’s temperature which can lead to an increase in energy production and cuts down the temperature peaks to avoid damage. In this study, the thermal performance of an En-ActivETICS wall was modelled in three different locations across Europe. The model was validated against on-site temperature measurements. The efficiency of the PV was calculated and an optimal PCM thickness and melting temperature were selected. The results show that annual energy production of the PV panel could increase between 2% (in Lodz) to 5% (in Madrid) using a 40mm-thick PCM. The optimal PCM melting temperatures for a certain climate should be chosen as 0 to 10 degrees below maximum air temperature in summer. The maximum peak PV temperatures could be reduced by ca. 20 K (from ∼90 to ∼70°C). Reasonable way to fix the stainless steel casing to the wall would be with four stainless steel anchor bolts – that gives 78% or 93% efficiency in case of EPS or PIR thermal insulation, respectively.