z-logo
open-access-imgOpen Access
Image Compression Algorithm Based On Variational Autoencoder
Author(s) -
Ying Sun,
Lang Li,
Yanheng Ding,
Jiabao Bai,
Xiangning Xin
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2066/1/012008
Subject(s) - autoencoder , computer science , algorithm , encoding (memory) , image compression , artificial intelligence , image (mathematics) , deep learning , image processing , pattern recognition (psychology)
Variational Autoencoder (VAE), as a kind of deep hidden space generation model, has achieved great success in performance in recent years, especially in image generation. This paper aims to study image compression algorithms based on variational autoencoders. This experiment uses the image quality evaluation measurement model, because the image super-resolution algorithm based on interpolation is the most direct and simple method to change the image resolution. In the experiment, the first step of the whole picture is transformed by the variational autoencoder, and then the actual coding is applied to the complete coefficient. Experimental data shows that after encoding using the improved encoding method of the variational autoencoder, the number of bits required for the encoding symbol stream required for transmission or storage in the traditional encoding method is greatly reduced, and symbol redundancy is effectively avoided. The experimental results show that the image research algorithm using variational autoencoder for image 1, image 2, and image 3 reduces the time by 3332, 2637, and 1470 bit respectively compared with the traditional image research algorithm of self-encoding. In the future, people will introduce deep convolutional neural networks to optimize the generative adversarial network, so that the generative adversarial network can obtain better convergence speed and model stability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here