
Features of the electron avalanche formation process in a strongly inhomogeneous electric field under high overvoltages
Author(s) -
Yu. I. Mamontov,
V. V. Lisenkov
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2064/1/012020
Subject(s) - electric field , electron avalanche , cathode , electron , anode , monte carlo method , cathode ray , atomic physics , materials science , electric discharge in gases , electrode , mechanics , computational physics , physics , chemistry , ion , ionization , nuclear physics , statistics , mathematics , quantum mechanics
The simulation of the electron avalanche formation process in subnanosecond discharges of high pressure was carried out by means of the Monte-Carlo approach. The discharge gap under consideration was of the configuration “the finger-shaped cathode – the hemispherical anode”. The presence of a conic-shaped microprotrusion on a cathode surface was assumed. Such the electrode configuration provided the strongly inhomogeneous distribution of an electric field. A gas simulated was nitrogen at a pressure of 6 atm. An average electric field strength across the discharge gap was varied from 200 kV/cm up to 400 kV/cm. Microprotrusion height was varied from 0 um up to 30 um. The critical size and formation time of an electron avalanche were determined under various conditions simulated. The threshold electric field strength for electrons to transit into the continuous accelerating regime was calculated for various heights of the microprotrusion. The applicability of the non-self-consistent Monte-Carlo technique for the investigation of the runaway electron kinetics and the correct simulation of the runaway electron beam transport across the discharge gap was shown.