
Investigation of the near-surface matter density radial distribution in the skin explosion of cylindrical conductors
Author(s) -
I. M. Datsko,
N. A. Labetskaya,
V. A. Vankevich
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2064/1/012011
Subject(s) - conductor , radius , plasma , materials science , diffraction , pinch , electrical conductor , optics , physics , composite material , computer security , quantum mechanics , computer science , nuclear physics
Investigations of the near-surface plasma formation process during skin explosion of cylindrical duralumin and copper conductors in rapidly increasing magnetic fields with their induction up to 500 T were carried out. The formation of plasma on the conductor surface was recorded by its glow in the visible range using a four-frame optical camera with an exposure time of each frame of 3 ns. The internal structure of the surface plasma, the assessment of the density of matter in it and its radial distribution were investigated using radiography pictures obtained by X-ray transmission with hv > 0.8 keV, which is formed at the “hot point” of the X-pinch. The dependences of the load substance density on its radius were determined and constructed from the obtained X-ray diffraction patterns at different points in time from the beginning of the current. So at 216 ns at a radius of 1.8 mm of a duralumin conductor with an initial radius of 1.485 mm, the density of the substance is estimated to be 0.0068 g/cm 3 .