
Aspects of programming for implementation of convolutional neural networks on multisystem HPC architectures
Author(s) -
Sunil Pandey,
Naresh Kumar Nagwani,
Shrish Verma
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2062/1/012016
Subject(s) - convolutional neural network , computer science , deep learning , scalability , artificial intelligence , artificial neural network , pipeline (software) , boosting (machine learning) , machine learning , parallel computing , programming language , database
The training of deep learning convolutional neural networks is extremely compute intensive and takes long times for completion, on all except small datasets. This is a major limitation inhibiting the widespread adoption of convolutional neural networks in real world applications despite their better image classification performance in comparison with other techniques. Multidirectional research and development efforts are therefore being pursued with the objective of boosting the computational performance of convolutional neural networks. Development of parallel and scalable deep learning convolutional neural network implementations for multisystem high performance computing architectures is important in this background. Prior analysis based on computational experiments indicates that a combination of pipeline and task parallelism results in significant convolutional neural network performance gains of up to 18 times. This paper discusses the aspects which are important from the perspective of implementation of parallel and scalable convolutional neural networks on central processing unit based multisystem high performance computing architectures including computational pipelines, convolutional neural networks, convolutional neural network pipelines, multisystem high performance computing architectures and parallel programming models.