z-logo
open-access-imgOpen Access
Computational study of the efficiency of various methods of intensification of convective heat transfer
Author(s) -
М.С. Французов
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2057/1/012010
Subject(s) - reynolds number , heat transfer , mechanics , convective heat transfer , turbulence , thermal hydraulics , spiral (railway) , convection , range (aeronautics) , mechanical engineering , materials science , thermodynamics , physics , engineering , composite material
This paper presents the results of a computational study of the efficiency of various methods of heat transfer intensification in model channels containing various types of intensifiers. The following methods of intensification of convective heat transfer are considered: acoustic, the intensifiers twisted tape, wire spiral, and joint intensifier of a wire spiral and twisted tape. The study of thermal and hydraulic processes in the channels is carried out using computer modeling based on the solution of the Navier-Stokes equations averaged by Reynolds, the energy and state equations supplemented by the turbulence model. The thermal and hydraulic characteristics of various methods of heat transfer intensification are determined in the range of Reynolds numbers from 10000 to 60,000, and the efficiency of the intensification is determined based on the author's criterion. The characteristics of a smooth channel in the above-mentioned range of Reynolds numbers are considered as reference thermal and hydraulic characteristics. Comparative analysis has shown that the acoustic method of heat transfer intensification is most effective in the range of Reynolds numbers, where different modes of self-sustaining acoustic oscillations occur. The presented results may be used in the development and design of heat exchangers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here