
Hydrogen-based electricity storage optimization on buildings by coupling thermal and photovoltaic electricity production towards carbon neutrality
Author(s) -
Y Morier,
Sergi Aguacil Moreno,
Philippe Couty
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2042/1/012092
Subject(s) - photovoltaic system , photovoltaics , sizing , electricity , environmental science , greenhouse gas , hydrogen production , hydrogen storage , thermal energy storage , electricity generation , process engineering , environmental economics , waste management , hydrogen , engineering , electrical engineering , chemistry , economics , ecology , physics , organic chemistry , biology , power (physics) , quantum mechanics
Self-sufficiency (SS) of buildings with low greenhouse gas (GHG) emissions can be obtained using photovoltaics (PV). To maximize self-consumption - minimizing the import of grid electricity - PV can be coupled with a hydrogen storage system converting the electricity to hydrogen by electrolysis during the summer season, when the on-site production is higher, and using it during the winter season with fuel cells. This article deals with the sizing constraints of solar hydrogen systems at building-scale. The future building for the Smart Living Lab (SLL) in Fribourg (Switzerland) has been taken as case study. It has four stories and a mixed usage (Office-building and Research facilities), with a multi-oriented PV installation in order to produce enough electricity to achieve at least 50% of self-sufficiency. Using the PV production, this study aims to optimise the sizing of a hydrogen storage system allowing to reach the required self-sufficiency ratio. Finally, a comparison of the global efficiency of the system for three different demand-side scenarios.