
Modeling of Photovoltaic-Thermal District Heating with Dual Thermal Modes
Author(s) -
Anneka Kang,
Ivan Korolija,
Dimitrios Rovas
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2042/1/012090
Subject(s) - photovoltaic system , modelica , thermal , environmental science , electricity , roof , automotive engineering , thermal energy , nuclear engineering , engineering , electrical engineering , meteorology , simulation , civil engineering , thermodynamics , physics
Solar photovoltaic thermal (PVT) collectors could be a competitive addition to district heating systems, particularly in areas with high energy density since they simultaneously produce electricity and heat whilst increasing the PV efficiency through cooling. This study presents a new Modelica PVT model, which is used together with EnergyPlus in a co-simulation setup to assess the technical feasibility of solar PVT district heating in new builds. The model has been applied to a block of 12 2-bedroom terraced houses with a 184m 2 PVT array on the south facing side of the roof. It was identified that well-designed seasonal PVT heating configurations and control schemes are required to maximise PVT outputs. PVT dual thermal modes occur when the PV is either connected to a load or producing at close to the maximum power point. Integrating the dual modes into a control system could be more economical if heat tariffs were higher than electrical ones when heat demand is greater than the PVT thermal output.