
Temperature level optimization for low-grade thermal networks using the exergy method
Author(s) -
Yolaine Adihou,
Malick Kane,
Julien Ramousse,
Bernard Souyri
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2042/1/012029
Subject(s) - exergy , renewable energy , geothermal gradient , exergy efficiency , process engineering , electricity , environmental science , geothermal energy , energy consumption , thermal , computer science , engineering , thermodynamics , electrical engineering , geology , physics , geophysics
Low-temperature thermal networks open the field for additional renewable and recovered energy sources to be used. The exploitation of low exergy level resources requires decentralized heat pumps having a significant impact on the network's overall electricity consumption. Thus, a compromise must be found in order to minimize thermal and electrical consumption while integrating a maximum of renewable energy sources. This optimum is governed by the temperature level of the network. This paper aims at determining the optimal network temperature using the exergy criterion. The exergy method is detailed and applied to the multi-source network blueCAD (Fribourg) fed by geothermal energy, and FriCAD, a high temperature district heating network. The optimum temperature decreases as the share of geothermal energy in the production increases. For blueCAD, it ranges from 40 to 55 °C.