
Selecting classifiers to ensure the quality and reliability of pattern recognition at class intersection
Author(s) -
D.K. Bekmuratov
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2032/1/012034
Subject(s) - classifier (uml) , computer science , artificial intelligence , intersection (aeronautics) , reliability (semiconductor) , pattern recognition (psychology) , sample space , machine learning , software quality , object (grammar) , dimension (graph theory) , class (philosophy) , software , data mining , mathematics , software development , power (physics) , physics , quantum mechanics , pure mathematics , engineering , programming language , aerospace engineering