
Heart Failure Prediction with Machine Learning: A Comparative Study
Author(s) -
Jing Wang
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2031/1/012068
Subject(s) - normalization (sociology) , oversampling , heart failure , database normalization , machine learning , artificial intelligence , computer science , pattern recognition (psychology) , medicine , cardiology , computer network , bandwidth (computing) , sociology , anthropology
Heart failure is a worldwide healthy problem affecting more than 550,000 people every year. A better prediction for this disease is one of the key approaches of decreasing its impact. Both linear and machine learning models are used to predict heart failure based on various data as inputs, e.g., clinical features. In this paper, we give a comparative study of 18 popular machine learning models for heart failure prediction, with z-score or min-max normalization methods and Synthetic Minority Oversampling Technique (SMOTE) for the imbalance class problem which is often seen in this problem. Our results demonstrate the superiority of using z-score normalization and SMOTE for heart failure prediction.