
Propagation and scattering effects in temporal metastructures
Author(s) -
Davide Ramaccia,
Andrea Alù,
Alessandro Toscano,
Filiberto Bilotti
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2015/1/012120
Subject(s) - scattering , metamaterial , reflection (computer programming) , wavelength , interface (matter) , transmission (telecommunications) , physics , electromagnetic radiation , optics , field (mathematics) , acoustics , computer science , telecommunications , mathematics , mechanics , bubble , maximum bubble pressure method , pure mathematics , programming language
Electromagnetic scattering typically occurs when a change in the material properties is perceived by the propagating wave, that inevitably splits into a reflected and refracted wave to maintain the continuity of the field components at the interface between the two media. However, such a scattering phenomenon occurs also when the entire media suddenly switches its properties to other values at a certain instant of time, realizing the so-called temporal interface. After a temporal interface, a couple of waves, one reflected and one transmitted, starts to propagate in the new media with the same wavelength but at a different frequency. Exploiting the analogies and differences between spatial and temporal interfaces, in this contribution we present the temporal counterparts of conventional electromagnetic devices based on dielectric slabs and a cascade of them, i.e. , the multilayered structures. We discuss about the analysis and design strategies for synthetizing the desired scattering response in both transmission and reflection and present the possible families of devices based on multi-switched temporal metamaterials that can be conceived.