
Light-induced electron pairing in two-dimensional systems
Author(s) -
O. V. Kibis,
M. V. Boev,
V. M. Kovalev
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/2015/1/012062
Subject(s) - pairing , electron , physics , excitation , electron pair , superconductivity , condensed matter physics , condensation , electromagnetic field , cooper pair , atomic physics , quantum mechanics , thermodynamics
The mechanism of electron pairing induced by a circularly polarized off-resonant electromagnetic field is suggested and examined theoretically for various two-dimensional (2D) nanostructures. Particularly, it is demonstrated that such a pairing can exist in 2D systems containing charge carriers with different effective masses. As a result of the pairing, the optically induced hybrid Bose-Fermy system appears. The elementary excitation in the system are analyzed and the possible Bose-Einstein condensation of the paired electrons and the related light-induced superconductivity are discussed.