
Vision-based Position estimation and Indoor scene recognition algorithm for Quadrotor Navigation
Author(s) -
B. Anbarasu,
G. Anitha
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1969/1/012001
Subject(s) - artificial intelligence , computer science , computer vision , support vector machine , pattern recognition (psychology) , classifier (uml) , position (finance) , feature (linguistics) , linguistics , philosophy , finance , economics
In this paper, an effective and simple Grid based vanishing point detection position estimation algorithm and Enhanced GIST descriptors based indoor scene recognition algorithm for navigation of MAV in indoor corridor environment is described. Two different classifiers, k-nearest neighbour classifier and support vector machine is employed for the categorization of indoor scenes into corridor, staircase or room. Indoor scene classification was performed on Dartaset-1. In the training phase of the indoor scene recognition algorithm, GIST, HODMG and Enhanced-GIST feature vectors are extracted for all the indoor training images in the Dataset-1 and indoor scene classifiers are trained for the extracted image feature vectors and assigned image labels of the indoor scenes (corridor-1, staircase-2 and room-3). In the testing phase of the indoor scene recognition algorithm, for each unknown test image frame GIST, HODMG and Enhanced-GIST feature vectors are extracted and the indoor scene classification is performed using a trained scene recognition model. The proposed indoor scene recognition algorithm using SVM with Enhanced GIST descriptors produced high recognition rates of 99.33% compared to the KNN classifiers. After recognizing the indoor scene as corridor, the MAV has to estimate its position based on the detection of vanishing point in the indoor corridor image frames. Experimental results show that the proposed method is suitable for real time operations.