z-logo
open-access-imgOpen Access
A Multilayer Neural Networks Supervised Learning Algorithm Based Energy-Efficient VLSI Processor Design
Author(s) -
R. Mohanapriya,
D. Vijendra Babu,
S. Sathishkumar,
C. Sarala,
E. Anjali,
J. Elumalai
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1964/6/062042
Subject(s) - very large scale integration , computer science , artificial neural network , electronic circuit , coding (social sciences) , computer engineering , energy consumption , algorithm , artificial intelligence , computer architecture , embedded system , electrical engineering , engineering , statistics , mathematics
Neural networks are abstract structures modeled by the brain to store evidence in the form of spikes. When introduced in VLSI circuits, neural networks are supposed to have new computer processing methods and economically viable computer simulations. We suggest a novel set of training examples for neural nets spatial and temporal coding in this article. In just this procedure, going through the roof neuronal is programmed to promote analogue VLSI applications with resistor analogue memory, from which incredible energy consumption can be accomplished. Can also suggest many strategies to boost efficiency on a model training and prove that the proposed method’s SVM classifier is as high as it was for the retrained dataset’s province temporal coding Computational Intelligence algorithms. Incorporating the developed framework can even recommend very massive circuit boards. The frequency analogue circuits utilize intermittent processing to reimburse capacitance processes, unlike the traditional analogue voltage and current type circuitry being used compute-in-memory circuits. Even though connectors lacking operating amps can still be constructed, it can also be controlled with incredibly low energy consumption. Finally, the preservation of the designed highlights algorithms toward alterations from the system’s production phase and is inevitable in analogue VLSI deployment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here