
Gravitational waves from gauge-invariant perturbations of spherically symmetric spacetimes
Author(s) -
P. D. Lasky
Publication year - 2009
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/189/1/012023
Subject(s) - gravitational wave , physics , mathematical physics , invariant (physics) , gravitation , classical mechanics , gauge (firearms) , theoretical physics , astronomy , geography , archaeology
One difficulty associated with perturbations of spherical collapse models in General Relativity is attributed to the junction conditions required at the interface of the interior matter-filled region and the exterior vacuum region. This implies extracting information about gravitational waves at spacelike infinity is also a difficult task. In this talk, I present a method which eliminates the need for junction conditions in both the background and perturbed spacetimes, thereby allowing relatively simple modelling of gravitational waveforms. This is achieved by using a recently developed method that enables a single line element to be expressed for the entire spherically symmetric background spacetime. Perturbing this spacetime in a gauge-invariant manner implies junction conditions are not required at any stage of the perturbation. Wave equations are derived for the Newman-Penrose Weyl scalars which hold in both the matter filled regions of the spacetime as well as the vacuum exterior regions