
Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning
Author(s) -
Windra Swastika,
G. M. Kristianti,
Romy Budhi Widodo
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1869/1/012092
Subject(s) - normalization (sociology) , preprocessor , convolutional neural network , computer science , artificial intelligence , residual neural network , pattern recognition (psychology) , blood smear , architecture , deep learning , malaria , medicine , geography , pathology , archaeology , sociology , anthropology
Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG-16 and ResNet. The effect of preprocessing is analyzed in this research. VGG-16, ResNet, and the custom architecture created by the previous research are being used in this study. The preprocessing methods being analyzed in this research include gray-world normalization and comprehensive normalization. The highest accuracy improvement per epoch (0.5256% using ResNet-50 and 0.0352% using custom architecture) is achieved through gray-world normalization, that also improves final accuracy (90.1% using ResNet-50 and 93.1% using custom architecture) when compared to other methods with the same epochs for ResNet and custom architecture.