
Quasilinear p(x)- Laplacian parabolic problem: upper bound for blow-up time
Author(s) -
N Lakshmipriya,
Gnanavel Soundararajan
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1850/1/012007
Subject(s) - materials science , algorithm , computer science
This paper presents a study of blow-up of solutions to a quasilinear p ( x )-Laplacian problem related to the equation z t ( x , t ) = Δ p ( x ) z ( x , t ) + g ( z ( x , t ) ) We use a condition on the nonlinear function g ( z ) given by, ς ∫ 0 z g ( s ) d s ⩽ z g ( z ) + η z p ( x ) + μ , z > 0 We extend the existing results on blow-up for a nonlinear heat equation to variable exponent case and establish an upper bound for the blow-up time with the help of concavity method.