z-logo
open-access-imgOpen Access
Some Results on Quasi-Semiprime Submodules
Author(s) -
Omar M Al-Ragab,
Nuhad S. Al-Mothafar
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1818/1/012189
Subject(s) - semiprime , semiprime ring , mathematics , ideal (ethics) , commutative property , pure mathematics , combinatorics , philosophy , prime (order theory) , epistemology
Let R be a commutative ring with unity and let B be a submodule of a non-zero left R-module D , B is called semiprime if whenever a k y ∈ B , a ∈ R , y ∈ D , k ∈ Z + implies a y ∈ B . We say that a proper submodule B of an R-module D is a quasi-semiprime submodule if whenever a k b y ∈ B , where a , b ∈ R , y ∈ D , k ∈ Z + implies that a b y ∈ B . Equivalently, a proper submodule B of an R-module D is said to be a quasi-semiprime submodule if and only if [ B ∶ ( y )] is a semiprime ideal of R for each y ∈ D . We give many results of this type of submodules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here