
Generalizing Uniform Distribution Using the Quantile Function
Author(s) -
Sarmad Rahman Hussein,
Kareema Abad Al-Kadim
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1818/1/012067
Subject(s) - quantile function , quantile , mathematics , exponential distribution , order statistic , moment generating function , statistics , log cauchy distribution , generalization , log logistic distribution , moment (physics) , exponential function , q function , distribution (mathematics) , noncentral chi squared distribution , distribution fitting , cumulative distribution function , probability density function , mathematical analysis , ratio distribution , inverse chi squared distribution , asymptotic distribution , physics , classical mechanics , estimator
A New Distribution in this paper was derived. The generalization of the uniform distribution using the quantile function of the T-X family depends on the reliability of the exponential distribution, then the quantile function reliability function. We studied the properties (moment s, some reliability analysis, moment generating function, quantile and median, order statistics, entropy). Then estimate the parameters using the maximum likelihood method.