
Sobolev Inequalities for Functions on Graphs
Author(s) -
Eman Samir Bhaya,
Zainab Flaih
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1804/1/012132
Subject(s) - sobolev space , sobolev inequality , mathematics , sobolev spaces for planar domains , pure mathematics , interpolation space , inequality , discrete mathematics , mathematical analysis , functional analysis , biochemistry , chemistry , gene
The aim of this paper is to study the Sobolev inequalities when 0 < p 1. Here we prove Sobolev types inequalities in the case 0 < p < 1. An infinite dimensional Sobolev inequality for expander is also proved. Also we introduce estimates for Banach-Mazur distance between the spaces S p (G) and Z- using Cheeger constant.