
The Sequence G-asymptotic Average Shadowing Property with G-chain transitive
Author(s) -
Raad safah Abood Al-Juboory,
Iftichar Mudhar Talb Al-Shara'a
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1804/1/012103
Subject(s) - sequence (biology) , transitive relation , mathematics , metric space , product (mathematics) , metric (unit) , space (punctuation) , discrete mathematics , combinatorics , computer science , business , marketing , geometry , genetics , biology , operating system
Let ( M , d ) be a compact metric @-space, Φ : M → M be a continuous map. This paper aims to study the idea of the sequence-asymptotic average shadowing property ( { s i }-AASP ) for a continuous map on-space, ( { s i :i ≥1} be a given positive integers sequence, where s 0 = 0 ) and achieves the relative of the { s i }-AASP with the sequence AASP ( { s i }-AASP ). We prove that if ( M, d ) are metric 1 -spaces, (X, d) then metric 2 -spaces and ƒ : 1 χ → Μ , ψ : 2 x Χ → Χ are continuous maps, then ƒ has the 1 { s i }-AASP and ψ has the 2 { s i }-AASP if and only if the product ƒ x ψ has the 1 x 2 { s i }-AASP. Also, we show that if Φ has the { s i }-AASP then Φ is-chain transitive.