z-logo
open-access-imgOpen Access
Dynamical Analysis on A Model of Cholera Epidemic with Quarantine, Vaccination, and Two Path of Transmissions
Author(s) -
Lilis Suryani,
Wuryansari Muharini Kusumawinahyu,
Nur Shofianah
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1776/1/012052
Subject(s) - equilibrium point , basic reproduction number , epidemic model , stability theory , quarantine , disease transmission , transmission (telecommunications) , mathematical economics , stability (learning theory) , exponential stability , mathematics , point (geometry) , computer science , biology , physics , virology , mathematical analysis , demography , ecology , nonlinear system , sociology , population , telecommunications , geometry , quantum mechanics , machine learning , differential equation
This research focus on dynamical analysis of a SIQRVB (Susceptible-Infectious-Quarantined-Recovered-Vaccinated-Bacterial) model. It describe the spread of cholerae with quarantine, vaccination and two transmission paths. As is well-known, there mainly exist two transmission paths for cholerae: environment-to-human transmission and human-to-human transmission. This model has two equilibrium points, that is disease-free equilibrium point which always exists and an endemic equilibrium point that exists with some conditions. The local stability of the equilibrium points is investigated by using Routh-Hurwitz criteria. The method of Next Generation Matrix is applied to get the basic reproduction number R 0 . It can be shown numerically that disease-free equilibrium point is locally asymptotic stable when R 0 < 1, while the endemic equilibrium point exist and locally asymptotic stable when satisfy Routh-Hurwitz criteria. Numerical simulations are given to illustrate the theoretical results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here