
Geomagnetic induced current modelling and analysis on high voltage power system
Author(s) -
Z. M. Khurshid,
Nur Fadilah Ab Aziz,
Mohd Zainal Abidin Ab Kadir,
Zeti Akma Rhazali
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1768/1/012007
Subject(s) - geomagnetically induced current , electric power system , ac power , electrical engineering , engineering , transformer , blackout , geomagnetic storm , voltage , electromagnetic coil , volt ampere reactive , control theory (sociology) , earth's magnetic field , power (physics) , voltage optimisation , computer science , physics , magnetic field , control (management) , quantum mechanics , artificial intelligence
Geomagnetically induced current (GIC) has become a significant concern that can affect the electrical power grid by causing a half-cycle saturation of power transformers. This saturation leads to an increase in even and odd harmonic distortions and reactive power losses of transformers, which may consequence in improperly triggering relays, tripping reactive power (VAR) compensators and shunt capacitor banks. Also, these reactive losses, harmonic, and the stray flux resulted due to this saturation may lead to overheating windings and cores of power transformers and generators and hence blackout. In this paper, GIC analysis has been conducted on a modified IEEE-18 bus test system by using Power System Simulator for Engineering (PSS/E) and Power System Computer-Aided (PSCAD/EMTDC) software. The simulation results have been obtained by considering a worst-case scenario of geomagnetic disturbance (GMD) by applying uniform induced electric fields with values of 10 V/km and 20 V/km at different directions with and without GIC blocking devices. Also, the impact of grounding resistances of the substations on calculated GIC due same mentioned induced fields has been investigated. The results show that the highest total reactive power losses across the system are obtained due to related induced electric fields at 120° and 300° storm angle. After the connection of GIC blocking devices to the substations, these reactive losses have drastically reduced. In addition, simulation results of the same test system by using PSCAD platform are obtained to investigate hysteresis and harmonic results during system operation and the presence of GIC.