z-logo
open-access-imgOpen Access
Knowledge Graph Completion Based on Graph Representation and Probability Model
Author(s) -
Luwei Liu,
Congshan Zhu,
Weiliang Zhu
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1757/1/012029
Subject(s) - computer science , theoretical computer science , graph , embedding , graph property , null graph , voltage graph , line graph , artificial intelligence
Knowledge Graph provides an effective scheme for unstructured knowledge on the Internet. but, to a large extent, the lack of information in the knowledge graph restricts the application of the knowledge graph. Therefore, knowledge graph completion has been an attractive research area. In recent years, many researchers apply graph convolutional neural networks to knowledge graph embedding so as to solve this problem, including R-GCN, SACN et al. The current state-of-the-art SACN uses graph convolutional neural as an encoder to make more accurate embeddings of graph nodes, and uses a convolutional network as a decoder, leading a good performance of link prediction task. In this work, we produce a novel graph representation model based on SACN---property graph convolutional network called PGCN. PGCN treats the knowledge graph as a property graph, regarding the initial embedding vector of entities and relations as the property of nodes and edges. What makes the model different is that it introduces the node clustering before convolving the nodes, so that the graph takes into account the importance of neighbors when aggregating the neighbors of nodes. We adopt the probability model Conv-TransE proposed by SACN for the modeling of relation of graph, Conv-TransE takes advantages of ConvE and use probability method which greatly improves the efficiency of the experiment and avoids the construction of the corrupted triplet. We conduct experiments on the standard datasets WN18RR and FB15k-237, and demonstrate that our new model achieves better performance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here