
The singular value decomposition of the dynamic ray transforms operators acting on 2-tensor fields in ℝ2
Author(s) -
A. P. Polyakova,
I. E. Svetov
Publication year - 2021
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1715/1/012040
Subject(s) - singular value decomposition , tensor (intrinsic definition) , mathematics , singular value , rotation (mathematics) , value (mathematics) , pure mathematics , decomposition , mathematical analysis , algebra over a field , physics , algorithm , geometry , statistics , quantum mechanics , biology , ecology , eigenvalues and eigenvectors
We consider the problem of the dynamic two-dimensional 2-tensor tomography. An object motion is a combination of rotation and shifting. Properties of the dynamic longitudinal, mixed and transverse ray transform operators are investigated. The singular value decompositions of the operators with usage of the classic orthogonal polynomials are constructed.