z-logo
open-access-imgOpen Access
A Conjugate Gradient Method for Inverse Problems of Non-linear Coupled Diffusion Equations
Author(s) -
Shuai Wang,
Xu Baiyan,
Tao Liu
Publication year - 2020
Publication title -
journal of physics. conference series
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 85
eISSN - 1742-6596
pISSN - 1742-6588
DOI - 10.1088/1742-6596/1634/1/012165
Subject(s) - conjugate gradient method , inverse problem , inverse , nonlinear conjugate gradient method , nonlinear system , mathematics , diffusion , diffusion equation , computer science , mathematical analysis , mathematical optimization , physics , gradient descent , geometry , artificial neural network , engineering , metric (unit) , operations management , quantum mechanics , machine learning , thermodynamics
In many fields there are many problems called inverse problems, which infer the reasons from the observations. The inverse problem of nonlinear diffusion equations plays a crucial role in the numerical simulation of reservoirs. This article constructs a conjugate gradient method to solve the inverse problem of a nonlinear diffusion equation within oil reservoir simulation. The numerical simulation is performed, and the results show the effectiveness of the method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here